Make your own free website on


[1] Lorrain, P. and Corson, D. R., Electromagnetic Fields and Waves., W. H. Freeman and Company, New York, 1970.

[2] Silvester, P., Modern Electromagnetic Fields. Prentice Hall Inc., London, 1968.

[3] Bardi, I., "Electromagnetic Field of Coupled Conductors by Variational Calculus," Periodica Polytechnica, Electrical Engineering, Technical University, Budapest, E(25), 4, 1981, pp.249-264.

[4] Gauthier N., "Explaining the Skin Effect Simply, with V = RI + L (dI/dt)," American Journal of Physics, 54(7), July 1986, pp. 649-650.

[5] McQuistan, R. B., Scalar and Vector Fields: A Physical Interpretation., John Wiley and Sons, Inc., New York, 1965

[6] Strutt, M. J. O., Skineffekt in zylindrischen Leitern, Annalen der Physik, 85 (1928), p 781.

[7] Mayer, D. and Ulrych B., "Skin Effect in the System of Conductors of Arbitrary Cross Sections," Elektrotechnicky Casopis (1984) No. 10, pp.751-766

[8] Reitz, J.R. and Milford, F. J. and Christy, R. W., Foundations of Electromagnetic Theory. Addison-Wesley Publishing Co. Inc., Reading, Mass. 1980.

[9] Mocanu, C. I., "The Equivalent Schemes of Cirlindrical Conductors at Transient Skin Effect," Transactions Paper, IEEE, August 6, 1971.

[10] Costache, Gh., "Transient Proximity Effect and Longitudinal Transient parameters of a Bifilar Transmission Line," Rev. Roum. Sci. Techn. - Electrotechnique et Energetique, Bucarest, vol. 16, 1971, No. 1, pp.111-124.

[11] Garg, V. K. and Weiss, J., "Finite element solution of Transient Eddy-Eurrent Problems in Multiply-Excited Magnetic Systems," IEEE Transactions on Magnetics, September 1986, Vol. MAG-22, No. 5, pp. 1257-1259.

[12] Smith, G. D., Numerical Solution of Partial Differential Equations, Finite Difference Methods, Oxford University Press, 1978.


[13] Rektorys, K , "Two Theorems Concerning the Equation

du/dt = d2u/dx2 + d2u/dy2,"Casopis pro Pestovani Matematiky, Vol. 79 (1954), No. 4, pp. 333-366 (see also summary in Mathematical Reviews, 18, p.47).

[14] Akin, J. E. , Application and Implementation of Finite Element Methods. Academic Press, Inc., (1982).

[15] Lapidus, L. and Pinder, G. F., Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley and Sons, New York, (1982)

[16] Vermuri, V. and Karplus, W. J., Digital Computer Treatment of Partial Differential Equations. Prentice - Hall, Inc., Englewood Cliffs, New Jersey (1981).

[17] Vichnevetsky, R. , Computer Methods for Partial Differential Equations, Vol. I, Prentice - Hall, Inc, (1981)

[18] Becher, E. B. and Carey, G. F. and Oden, J. T. , Finite Elements:

An Introduction, Vol. I, Prentice - Hall, (1981)

[19] Oden, J. T. and Carey, G. F., Finite Elements : Mathematical Aspects, Vol. IV, Prentice - Hall, (1983)

[20] Kreiss, H. O. , Numerical Methods for Solving Time Dependent Problems for Partial Differential Equations. Les Presses de L'Universite de Montreal, C. P. 6128, Succ. "A", Montreal, (1978)

[21] Brakhagen, F., Zur Konvergenz des ADI - Verfahrens in der Methode der finiten Elemente, Bericht Nr. 135, R. Oldenbourg Verlag, MÅnchen Wien (1982).

[22] Jain, M. K., Numerical Solution of Differential Equations, 2nd Edition, A Halsted Press Book, John Wiley and Sons, (1984)

[23] Fletcher, C. A. J., Computational Galerkin Methods. Springer Verlag,, New York (1984)

[24] Heger, W., "Diffusion of the Electromagnetic Field into a Conducting Semi-Infinite Solid," Research Report, General Electric Co., Advanced Electrical Systems Division. Ballston Spa, New York, August 1985.

[25] Melkes, F. and Zlamal, M., "Numerical Solution of Nonlinear Quasi-Stationary Magnetic Fields," International Journal for Numerical Methods in Engineering, Vol. 19, (1983), pp.1053-1062

[26] Twizell, E. H., Computational Methods for Partial Differential Equations. Ellis Horwood Ltd. - John Wiley and Sons, New York (1984).

[27] Ferziger J. H., Numerical Methods for Engineering Applications, John Wiley and Sons, New York (1981).

[28] Ciarlet, Ph. G., The Finite Element Method for Elliptic Problems. North-Holland Publ. Co. Amsterdam-New York (1978).

[29] Bathe K.J. and Wilson E.L., Numerical Methods in Finite Element Analysis. Prentice-Hall, Englewood Cliffs, New Jersey (1976).

[30] Ikeda T., Maximum Principles in Finite Element Models for Convection-Diffusion Phenomena. North-Holland Publ. Co., Amsterdam New York (1983).

[31] Collatz, L., Differential Equations: An Introduction with Particular Regard to Applications. John Wiley and Sons, Inc. New York (1986).

[32] Necas, J., Introduction to the Theory of Nonlinear Elliptic Equations. John Wiley and Sons, Inc. New York (1986).

[33] Young, J.H., Steady State Joule Heating with Temperature Dependent Conductivities. Applied Scientific Research 43 (1986) pp.55-65.

[34] Strutt, M. J. O., "Stromverdrangung in rechteckigen Leitern," Annalen der Physik, IV Folge, 83 (1927) pp.979-1000.

[35] Khalig, A. Q. M. and Twizell, E. H., "L0-Stable Splitting Methods for the Simple Heat Equation in Two Space Dimensions with Homogeneous Boundary Conditions," SIAM Journal Numerical Analysis. Vol. 23, No. 3 June 1986, pp.473-484.

[36] Silvester P.P. and Ferrari, R.L., Finite Elements for Electrical Engineers, Cambridge University Press, (1983).

[37] Webb, John, "Lecture Notes for Finite Elements in Electromagnetics," McGill University, (1986).

[38] Strang, G. and Fix, G. An Analysis of the Finite Element Method. Prentice-Hall, Inc. Englewood Cliffs, New Jersey (1973).

[39] Tandon, S.C. and Chari, M.V.K. "Transient Solution of the Diffusion Equation by the Finite Element Method," Journal of Applied Physics (53), 3, March 1981, pp. 2431-2432.

[40] Konrad A., Chari, M.V.K., and Csendes, Z.J. "New Finite Elements," IEEE MAG.-18, No. 2, March 1982, pp. 450-453.

[41] Kamar, A.M. , "Solution fo Nonlinear Eddy Current Problems Using Residual Finite Element Methods for Space and Time Discretization," IEEE Transactions on Magnetics, Vol. MAG-19, No. 5, September 1983.

[42] Tandon, S.C., Armor, A.F., and Chari, M.V.K., "Nonlinear Transient Finite Element Field Computation for Electrical Machines and Devices," IEEE Transactions on Power Apparatus and Systems. Vol. PAS-102, No. 5, May 1983

[43] Ciarlet, Ph. G., Numerical Analysis of the Finite Element Method, Les Presses de l'university de Montreal, C.P. 6128, Succ. "A", Que., Canada H3C-3J7, (1976).

[44] Oden, J. T. & Reddy, J. N., An Introduction to the Mathematical Theory of Finite Elements, John Wiley and Sons, 1976.

[45] Thomee, V., Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, 1984.

[46] Drake, P. A. and Rathmann, C. E., "Two-dimensional Current Diffusion in an EML Rail with Constant Properties," IEEE Transactions on Magnetics. Vol. MAG-22 (1986), No. 6, pp. 1448-1452.

[47] Garg, V. K., Weiss, J., and Del Vecchio, R. M., "A Parametric Study of Electromagnetic Launcher Rails Using the WEMAP System." Workshop on Electromagnetic Field Computation. IEEE Region 1, October 20 & 21, 1986, Schnectady, New York 12345.

[48] Ivanyi, A., "Determination of Quasi-stationary Electromagnetic Fields in Ferromagnetic Conductors by Variational Methods. Periodica Polytechnica, Electrical Engineering, Technical University, Budapest, El. 29, (1986), pp 43-56.